

Dynamic Pricing

- Prices can be changed regularly or at any time
- Use information regarding how price changes may affect sales
- Many pricing models are possible
 - ➤ Relationship (elasticity) is often unknown and changing, but some learning is possible
 - ➤ Other marketing mix factors (product, place, promotion) may be present

Provisdom Approach

- Fast feedback
 - First cut usually takes less than an hour of the decision maker or analyst's time and is completed by Provisdom in less than a day
 - > Efforts focus on aligning model with corporation's information
- Use all relevant information
 - Whether data or human knowledge, qualitative or quantitative, even imperfect or incomplete
- Transparent models and results
 - Problem is discretized into as many as billions of possibilities
 - Model can be queried like a database, simulated, or viewed in a decision tree
- Maximize shareholder value
 - Create the strategy that maximizes shareholder value
 - Compare shareholder value of optimal strategy against previous strategy to find value added

Example: Pizza Chain

- Corporate pizza chain has option to change pizza prices whenever advantageous. They can also choose to sell the chain for \$20M at any time.
- To advertise any lowering of prices, \$10M must be spent.
- Prices may be raised without advertising costs.
- Desire pricing strategy that maximizes shareholder value.

Pricing Model

$$S = \$10M * (D - P)$$

- S = Yearly Sales Rate
- *P* = Price per Pizza
- D = Product Desirability
- "Product Desirability" must be inferred from sales and the price. It represents many factors including competitors' prices and market conditions.
- Pricing model is valid for pizza prices between \$10 and \$15 and for at least ten years, but can be updated at any time.

Product Desirability

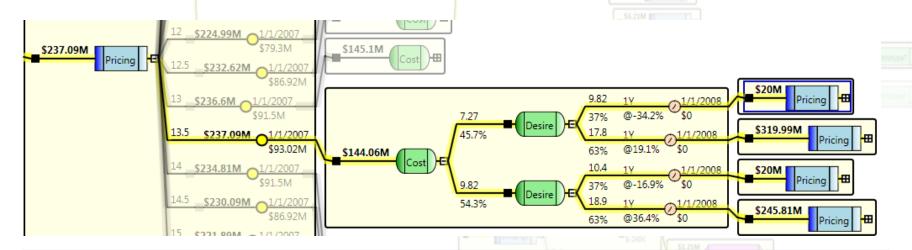
- Currently 18
- Uncertainty resembles geometric Brownian motion with constant growth and volatility
- High uncertainty (30% volatility)
- Trending downward (negative 20% expected growth rate)
- Strongly positive relationship with the Market (60% correlation)
- If desirability is less than the price, then sales are zero

Costs and Taxes

- Variable cost per pizza
 - ➤ Currently \$9
 - Uncertainty resembles geometric Brownian motion with constant growth and volatility
 - ➤ Moderate uncertainty (15% volatility)
 - Slight downward trend (negative 5% expected growth rate)
 - > Positive relationship with the Market (20% correlation)
 - Positive relationship with product desirability (10% correlation)
- Fixed yearly operating costs total \$50M
- Corporate taxes are 39% and apply to all costs and revenue

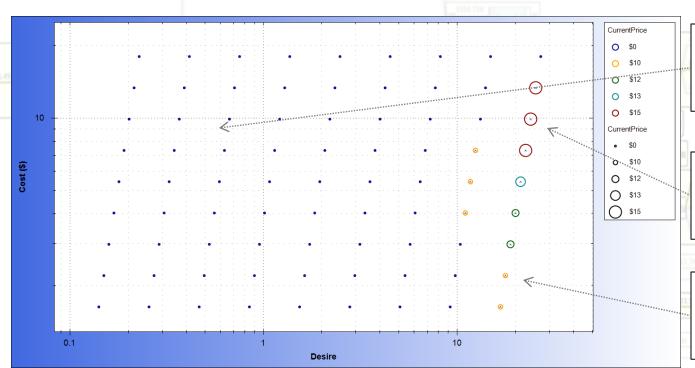
Building the Strategic Model

- Strategy is modeled in detail for ten years in oneyear time steps.
- Pricing choices are in 50-cent intervals between \$10 and \$15 and are determined yearly.
- Variable Cost per Pizza and Product Desirability are split into two new possible values each year.
- If the chain is still operating at the end of year 10, the future value is estimated by a complex function of the current state at that time.


Future Value Beyond 10 Years

$$V = F - \$203.05M + \$10M * min (D - C, 0)^2$$

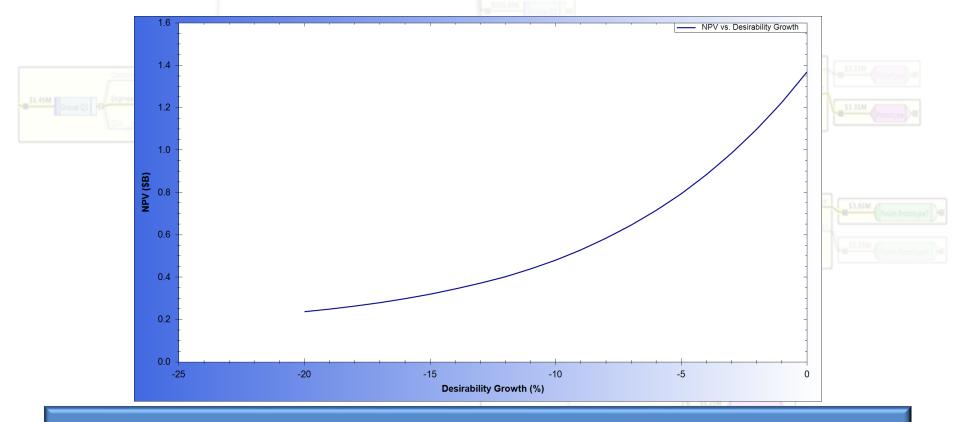
- V = Shareholder Value at Year 10
- F = Free Cash Flow (except allowing for negative sales and negative profit margins in the calculation)
- D = Product Desirability
- C = Variable Cost per Pizza


Model Feedback Sample: Screen Shot – Start of Decision Tree

- Useful for investigating model in detail.
- Highlights optimal-choice paths.
- In the tree below, the left-most blue rectangle represents the first pricing choice.
- Today's optimal choice is to set the price per pizza to \$13.50, resulting in an NPV of \$237.09M.

Model Feedback Sample: Optimal Strategy Variable Cost per Pizza vs. Product Desirability

- Useful for investigating full strategy.
- Graph below shows only year 8 when the previous price was \$12.


Sell chain when Desirability is not high

Price high when Desirability and costs are high

Price low when Desirability is high and costs are low

Model Feedback Sample: Queries NPV of Optimal Strategy vs. Desirability Growth

- Useful for providing insight into how model property changes affect value
- For example, increasing desirability growth from -20% to -10% would add approximately \$200M in shareholder value.

Model Feedback Sample: Gradient Analysis

- A sensitivity analysis that calculates a change in shareholder value with a change in a model property value.
- Generally calculated with the optimal strategy and all the model properties at their original values.
- Similar to a Tornado diagram but arguably more relevant.

 The table below contains the nine model properties that were given in terms of percentages.

d(NPV) / d(%)
\$11.6M
\$8.4M
(-\$4.5M)
(-\$3.6M)
(-\$3.1M)
(-\$1.5M)
(-\$0.6M)
\$0.3M
(-\$0.3M)

Note that Desirability Volatility has a large, positive impact on the NPV.

- Also note that Cost Volatility has a small, negative impact on the NPV.
- Volatility of an uncertainty generally affects NPV in several ways:
 - With a constant expected growth rate, more volatility means greater expected values.
 - Flexibility becomes more valuable (i.e., the option to change prices or sell the chain).
 - A relationship with the Market is magnified, resulting in changes to the discount rates.

13

Strategy that Maximizes Shareholder Value

- Today's optimal choice is to set price to \$13.50 per pizza.
- To continue to get most accurate optimal strategy over time, automatically or manually feed new state variable values into software.
- Full ten-year strategy is dynamic and complex, roughly:
 - > Sell chain when Desirability is not high.
 - Price high when Desirability and costs are high.
 - > Price low when Desirability is high and costs are low.
 - No small price drops, e.g. from \$12 to \$11.50 (due to the advertising costs).

14

Strategy Comparisons

- Useful for calculating shareholder value added by analysis.
- Table below compares optimal strategy to a strategy of setting a constant price of \$12.50 per pizza and to a strategy of setting a constant price of \$13.50 per pizza.
- The comparisons are in terms of shareholder value, in both absolute and percentage terms.

	(/)) individual of	4000 March 23 Years March 2007 T. (3 4)
Strategy		NPV	\$ increase	% increase
			to optimal	to optimal
Optimal St	rategy	\$237M	\$0	0%
Constant P	rice of \$12.50	\$27M	\$210M	777.8%
Constant P	rice of \$13.50	\$38M	\$199M	523.7%

Example Modifications and Extensions

- Extend model by adding decisions on when and how much to advertise, along with uncertainties reflecting any effect advertising may have on Product Desirability.
- Replace pricing model with nearly any other price/sales relationship.

Summary of Provisdom Process

- 1. Gather Initial Information
- 2. Map Business Problem to Software (using Information Rules)
- 3. Run Initial Model

Growth = prop(Oil.Growth) &&
Volatility = prop(Oil.Volatility) &&
Yield = prop(Oil,Yield):

- Find and execute next rule.
- Find probabilities with a nonlinear optimization solver.
- Discretize continuously-valued uncertainties and time.
- Calculate proper discount rates.
- 4. Analyze Results
- Refine Model

