

www.provisdom.com

Provisdom Corporation

Last Updated: 6/12/09

Dynamic Operating Strategy

- Strategy can be changed regularly or at any time.
- Use information regarding changing and unknown operating costs.
- Make purchasing decisions based on operating strategy.

Provisdom Approach

• Fast feedback

- First cut usually takes less than an hour of the decision maker or analyst's time and is completed by Provisdom in less than a day
- Efforts focus on aligning model with corporation's information

Use all relevant information

- Whether data or human knowledge, qualitative or quantitative, even imperfect or incomplete
- Transparent models and results
 - Problem is discretized into as many as billions of possibilities
 - Model can be queried like a database, simulated, or viewed in a decision tree
- Maximize shareholder value
 - Create the strategy that maximizes shareholder value
 - Compare shareholder value of optimal strategy against previous strategy to find value added

Example: Operating a Boiler

- New industrial boiler needed to run manufacturing plant for next 20 years.
- Three boilers from which to choose
 - Fuel Oil Boiler -- \$200K
 - Natural Gas Boiler -- \$190K
 - Dual Boiler (burns oil or gas) -- \$225K
- Dual burner can switch between fuel types for a cost of \$9K.
- Desire operating and purchasing strategy that maximizes shareholder value.

Fuel Oil and Natural Gas

- Trades on a public market
- At current market prices, yearly boiler fuel costs total
 - \$28K with fuel oil
 - \$29K with natural gas
- Uncertainty resembles geometric Brownian motion with constant growth and volatility
- Small, upward trend in prices (5% expected growth rate)
- Medium uncertainty
 - 13% volatility for fuel oil
 - 10% volatility for natural gas
- Market assigns no value or cost to fuel storage (0% yield)
- Strong, positive relationship between fuel oil and natural gas (30% correlation)

Free Cash Flow

- Yearly maintenance cost of \$2K
- Profitable corporation with 39% corporate tax rate

Depreciation of boiler purchase price occurs

linearly over 16 years.

Building the Strategic Model

- 20-year boiler strategy is modeled in 2-year time steps.
- Fuel oil and natural gas prices are each split into two new possible values each time step.

Model Feedback Sample: Screen Shot – Start of Decision Tree

- Useful for investigating model in detail.
- Highlights optimal-choice paths.
- In the tree below, the left-most blue rectangle represents the first fuel choice.
 - Today's optimal choice is to purchase the Dual Boiler and burn oil, resulting in an NPV of -\$474.24M.

Model Feedback Sample: Optimal Strategy for Burning Natural Gas

- Useful for investigating full strategy.
- Graph below shows only year 16.

Model Feedback Sample: Queries NPV of Optimal Strategy vs. Fuel Switching Cost

- Useful for providing insight into how model property changes affect value
- For example, lowering fuel switch cost from \$9K to \$3K would add approximately \$4K in shareholder value.

Provisdom Corporation

Model Feedback Sample: Gradient Analysis

- A sensitivity analysis that calculates a change in shareholder value with a change in a model property value.
- Generally calculated with the optimal strategy and all the model properties at their original values.
- Similar to a Tornado diagram but arguably more relevant.
- The table below contains the nine model properties that were given in terms of percentages.

9M EL Cogineering \$1.49M ~1/1/2007			5-240K			
Model Property	d(NPV) / d(%)	•	Note that Corporate Tax Rate has a			
Oil Yield	\$13.6K	positive impact on the NPV because the				
Gas Yield	\$11.7K		Also note that Oil and Gas Volatility have a positive impact on the NPV and the			
Corporate Tax Rate	\$7.0K	@\$17/7007				
Oil Volatility	\$2.6K		Correlation has a negative impact due to			
Risk-Free Rate	(-\$2.6K)		the option to switch fuels.			
Gas Volatility	\$1.6K	50	Oil and Gas are Market assets			
Oil-Gas Correlation (-\$0.3k			Thus, growth rate has no effect on NPV.			
Oil Growth	\$0.0		Yield has a large, positive impact on the NPV because higher yield implies lower risk-			
Gas Growth	\$0.0		adjusted prices in the future.			

Strategy that Maximizes Shareholder Value

- Today's optimal choice is to purchase the Dual Boiler and burn fuel oil.
- To continue to get the most accurate optimal strategy over time, automatically or manually feed new state variable values into software.
- Full twenty-year strategy is dynamic and complex, roughly:
 - Continue with current fuel to avoid switching costs when fuel costs are relatively close.
 - > Burn oil when oil is relatively cheaper than gas.
 - > Burn gas when gas is relatively cheaper than oil.

Strategy Comparisons

- Useful for calculating shareholder value added by analysis.
- Table below compares optimal strategy to a strategy of purchasing the Oil Boiler and to a strategy of purchasing the Gas Boiler.
- The comparisons are in terms of shareholder value, in both absolute and percentage terms.

	317.92K 10 04/2/2007	EASY 4/2/2007	Consultants \$3.06M 4/2/2007	SM ZE
Strategy	NPV	\$ increase	% decrease	(Finish Prototype)
		to optimal	from optimal	(freise bestergent)
Optimal Strategy	-\$ <mark>474.24</mark> K	\$0	0%	
Oil Boiler	-\$498.17K	\$23.93K	-5.0%	
Gas Boiler	-\$ <mark>503.53K</mark>	\$29.29K	-6.2%	
	- Internet of the	5-2405	\$1.25M	-

Example Modifications and Extensions

- Extend model by adding decisions to replace the boiler, lease a boiler, or shut down the plant.
- Include revenue side of manufacturing.

Summary of Provisdom Process

- 1. Gather Initial Information
- 2. Map Business Problem to Software (using Information Rules)

Growth = prop(Oil.Growth) && Volatility = prop(Oil.Volatility) &&

\$0.215

\$0.21

Yield = prop(Oil, Yield):

- 3. Run Initial Model
 - Find and execute next rule.
 - Find probabilities with a nonlinear optimization solver.
 - Discretize continuously-valued uncertainties and time.
 - Calculate proper discount rates.
- 4. Analyze Results
- 5. Refine Model
- 6. Automate or Update Model Periodically